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Abstract

Tuning the models and parameters of common segmen-
tation approaches is challenging especially in the presence
of noise and artifacts. Ensemble-based techniques attempt
to compensate by randomly varying models and/or param-
eters to create a diverse set of hypotheses, which are subse-
quently ranked to arrive at the best solution. However, these
methods have been restricted to cases where the underlying
models are well established, e.g. natural images. In prac-
tice, it is difficult to determine a suitable base-model and the
amount of randomization required. Furthermore, for multi-
object scenes no single hypothesis may perform well for all
objects, reducing the overall quality of the results.

This paper presents a new ensemble-based segmenta-
tion framework for industrial CT images demonstrating that
comparatively simple models and randomization strate-
gies can significantly improve the result over existing tech-
niques. Furthermore, we introduce a per-object based rank-
ing, followed by a consensus inference that can outperform
even the best case scenario of existing hypothesis ranking
approaches. We demonstrate the effectiveness of our ap-
proach using a set of noise and artifact rich CT images from
baggage security and show that it significantly outperforms
existing solutions in this area.

1. Introduction
Broadly speaking, the goal of image segmentation is to

use the low level information at each voxel to infer high
level semantics such as objects. However, in applications
where the source data contains large amounts of noise and
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Figure 1. The difficulty in choosing the optimal parameters limits
the performance of industrial CT segmentation. From left to right,
the original CT image, ground-truth segmentation, region-growing
method which wrongly merges two objects even after careful pa-
rameter tuning, and the proposed segmentation.

artifacts low level features such as edges or voxel values
become unreliable. A common solution is to require addi-
tional domain knowledge, i.e. the shape of an organ in medi-
cal CT segmentation, to constrain the segmentation [14, 19].
However, many applications do not readily admit a param-
eterized model, for example due to the sheer variety of ob-
jects to consider. In such cases the additional information
is typically given in form of training data, providing exam-
ples of objects of interest. Traditionally, the training data
is used to tune parameters of the segmentation algorithm,
e.g. thresholds, energy functionals, etc. However, this pro-
cess can be labor intensive, is difficult to control, and the
results typically do not generalize gracefully. Despite so-
phisticated optimization tools for inference with segmenta-
tion models (e.g., Markov Random Fields), the underlying
model, learned from a finite training set, is often insufficient
to produce accurate results. In order to bridge this gap, ap-
proaches that learn multiple hypotheses to produce an over-
all more accurate solution have been developed [9, 24]. In
these techniques both model and/or parameters are varied
to create an ensemble of possible solutions. These are then
ranked using information from the training data to choose
the best hypothesis from the ensemble.

Ensemble approaches are attractive since their random-
ized nature can compensate for some level of noise and
artifacts. However, adapting these ideas to new applica-
tions can be challenging. In particular, picking an appro-
priate base-model to vary is difficult as is understanding the
amount of diversity required to produce good results. Fur-
thermore, for complex, multi-object segmentations no sin-
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gle hypothesis may be accurate for all objects equally. Fi-
nally, creating optimal ranking criteria is challenging and it
is well known that for many metrics the ground truth solu-
tion can be ranked lower than inferior results [20].

Instead, we introduce a new ensemble based segmen-
tation framework that uses a simple bottom-up hierarchi-
cal segmentation with a randomized merge order to create
multiple hypotheses, similar to the approach in [11]. We
demonstrate that with a reasonable degree of randomness,
our method can generate hypotheses that are significantly
better than the greedy solution and can compensate for a
large amount of noise and artifacts. Furthermore, rather
than ranking different hypotheses as a whole, we explore
the space of all potential objects in the ensemble and use
the training data to identify likely matches. The different
variations of a (potential) object are then combined in per-
object consensus segmentation to arrive at the final result.
This enables us to exploit locally accurate segmentations
from globally sub-optimal hypotheses. Additionally, this
strategy reduces the dependency on an optimal ranking cri-
terion as we no longer use it to evaluate the final result but
only to extract likely candidate objects. We shown that by
locally combining information from multiple hypothesis in
this manner our approach can outperform even the best case
scenarios in existing ranked hypothesis approaches, making
our results qualitatively different from the one in [24]. We
demonstrate the effectiveness of our system using a chal-
lenging set of CT scans from a baggage security system.
This data is well known to contain noise as well as severe
artifacts which makes many existing segmentation methods
ineffective. In particular, as shown in Figure 1 and dis-
cussed in Section 5, our results are significantly better than
even hand-tuned versions of existing methods.

2. Related Work and Contributions
Finding multiple hypotheses: The idea of identifying mul-
tiple hypotheses has been explored in a variety of computer
vision problems. In particular, a class of methods collec-
tively referred as “M-Best Map” have been successfully
used to generate multiple configurations for image segmen-
tation [16, 25, 9]. However, these methods produce solu-
tions that tend to be very similar to the Maximum a Poste-
riori (MAP) solution and each other. Batra et al. [4] de-
veloped a sequential model selection technique that empha-
sized the diversity of the solutions and showed it can pro-
duce significantly better results. An alternative approach
to generating multiple hypotheses is to use sampling strate-
gies that perturb the parameters of a segmentation algorithm
[6, 18, 17]. However, refining these solutions can be chal-
lenging if the data is sensitive to the parameter settings. Re-
cently, Kim et al. [11] proposed an ensemble creation strat-
egy that randomized the merge order in bottom-up hierar-
chical segmentation for foreground-background separation.

Industrial CT segmentation: Three dimensional CT im-
age segmentation is a well-studied problem, and used in a
wide variety of applications [23]. One of the most chal-
lenging aspects of industrial CT segmentation is the pres-
ence of severe metal artifacts in form of streaks, blooming,
or cupping (see Section 4). In several of these applications,
it is typical to start with a prior knowledge (or parametric
model) of the objects present in the image, e.g. mechani-
cal part, and use accurate segmentation results to compen-
sate for metal artifacts and other sources of noise, so that
interesting anomalies, such as defects, can be easily iden-
tified. For example, Li et al. [12] adopt a non-parametric
estimation method to estimate the spatial probability distri-
bution of gray-level intensities, and use the minimum cross
entropy technique to segment an object of interest. In [2],
the authors address a more challenging problem of detecting
metal features of varying thickness, and showed that region-
growing is very effective in such cases. Nevertheless, these
techniques are targeted specifically to metal objects and do
not perform well for other materials.
Transportation security: Finally we review the applica-
tion considered in this paper, where the goal is to iden-
tify potentially suspicious material signatures from baggage
scans. In [15], the authors adopt a fuzzy connectedness
technique to obtain an initial object segmentation for de-
tecting potential threats. However, this system requires ex-
tensive parameter-tuning, and cannot easily generalize to a
broader class of objects or materials. In order to improve
robustness against artifacts, Stratovan Tumbler, a medical
image segmentation framework, has been adapted for de-
lineating objects in baggage scans [22] and has shown to be
effective in partitioning some heterogeneous objects (for ex-
ample, parts of a laptop). Since the performance of bottom-
up hierarchical segmentation depends heavily on the merg-
ing order, the authors in [10] proposed a reverse approach
which begins by separating the set of object voxels from the
background, and then creates candidate splits into individ-
ual objects based on global criteria. However, the process
of identifying object voxels typically needs rigorous train-
ing and appears very sensitive to image artifacts.

2.1. Contributions

In this paper, we propose to build an ensemble of hierar-
chical segmentations for industrial CT volumes, and lever-
age semantic information to perform localized consensus
inference. Our contributions in detail are
Segmentation Ensembles: Following the work in [11], we
build an algorithm to create randomized ensembles for CT
volumes, and empirically determine the required degree of
randomness to compensate for the inherent uncertainties;
Semantic Candidate Selection: We develop a novel dis-
criminative feature for regions in CT images, and design
a simple reference-based scheme for identifying potential
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Figure 2. An overview of the proposed approach for CT segmentation. Starting with an initial oversegmentation of the volume, it builds an
ensemble of hierarchical segmentations and exploits the semantic information from supervisory data to identify candidate segments, that
are likely to contain objects of interest. Finally, consensus segmentation with graphcuts provides the overall partitioning.
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Figure 3. Hierarchy construction through randomization. In each
level of a hierarchy, candidate edges are randomly shuffled and
these edges are incrementally merged.

segments of interest;
Consensus Inference: Instead of ranking the hypotheses in
an ensemble, we propose to obtain a localized consensus
inference using graph-cuts for each object of interest; and
Application to Airport Security: We use the pro-
posed method in a transportation security application and
demonstrate its effectiveness in comparison to the popu-
larly adopted region-growing methods, using a challeng-
ing dataset provided by the Awareness and Localization of
Explosives-Related Threats (ALERT) Center of Excellence.

3. Proposed Approach

As illustrated in Figure 2, our method is comprised of
four stages: (a) initial oversegmentation, (b) building seg-
mentation ensembles, (c) semantic candidate selection, and
(d) localized consensus inference.

3.1. Initial Oversegmentation

Similar to several existing approaches, we begin by over-
segmenting the CT volume to create perceptually meaning-
ful atomic groups, referred to as supervoxels. In addition to
providing a non-uniform partitioning, supervoxels can cap-
ture the image redundancy, and greatly reduce the compu-
tational complexity of subsequent stages. In this paper, we

generate the initial supervoxels (each of size 10− 123 vox-
els) using the SLIC algorithm [1].

3.2. Building Segmentation Ensembles

Though region-growing methods have produced state-
of-the-art results in industrial CT segmentation, we ob-
served that a simple bottom-up hierarchical segmentation
can generate greedy solutions of reasonable quality. Moti-
vated by its flexibility and simplicity, as discussed in [11],
we adopted a bottom-up approach for creating segmentation
ensembles with industrial CT images. Note that, all hierar-
chies in the ensemble start with the same set of supervoxels.
Each hierarchy incrementally merges regions from the pre-
vious level. The edge affinity, w`

i,j , between two regions r`i
and r`j in level ` is measured as the similarity between their
intensity histograms:

w`
i,j = exp

(
− σ1χ2(H(r`i ), H(r`j))

)
. (1)

Here,H(r`i ) is the intensity histogram of region r`i , χ2 mea-
sures the chi-square distance between two histograms, and
σ1 is the parameter for the Gaussian radial basis function.

We now generate multiple independent segmentations
from the same set of supervoxels by randomizing the merg-
ing order of candidate edges, which allows us to explore as
many aggregations as possible. At level `, we sort the edges
in the descending order based on their edge weights. We
then extract the candidate edge set, E`

C = {e`i,j |w`
i,j ≥ δ},

where δ is a predefined threshold. From the candidate set,
we randomly choose edges sequentially, merge the regions
corresponding to that edge if either of the regions have not
been merged previously. For this random sampling, we can
use a simple uniform distribution for all candidates or cre-
ate a discrete distribution that is proportional to the edge
similarity. Figure 3 illustrates this randomization proce-
dure. Note that, in contrast to the approach in [11], we can
control the degree of randomness through the parameter δ.
Low degree of randomness will produce hypotheses that are
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Figure 4. Candidate object regions of different hierarchical seg-
mentations, each of which shows a different object configuration.

very similar to the greedy solution. Whereas, arbitrarily in-
creasing the degree of randomness can result in inaccurate
segmentations. In Section 5, we will empirically study the
effect of randomness on the solution diversity, and show
that the greedy solution can be significantly improved by
compensating for artifacts with a low degree of randomness
in the merging order. Note that, this process is computa-
tionally very simple when compared to solving a complex,
discrete optimization problem as in [4].

3.3. Semantic Candidate Selection

Given a set of hypotheses, it is typical to adopt a super-
visory approach that predictively ranks the solutions based
on object plausibility [6] or other criterion on the segmen-
tation quality [24]. These approaches assume that for an
image with multiple objects, the best hypothesis can pro-
vide accurate segmentations for all objects equally. How-
ever, in industrial CT images with severe non-uniform ar-
tifacts, finding such an optimal hypothesis is very difficult.
The proposed approach addresses this challenge by using
supervisory data to filter the large pool of segments from
the ensemble and identify a small set of candidate segments,
that can potentially contain the objects of interest. Instead
of identifying the best hypothesis, this approach identifies
multiple configurations of the same object from different
hypotheses, and obtains a weighted consensus inference.

In order to identify candidate segments, we propose to
build discriminative features for the segments in the hierar-
chy. We begin by extracting the following set of features for
each region in the ensemble: (a) Intensity statistics (mean,
standard deviation, and percentiles); (b) Histogram of num-
ber of voxels in each radii bin from the center of mass [3];
(c) Area; (d) Volume-to-surface area ratio. Following this,
we use local discriminant embedding (LDE) [8], a super-
vised graph embedding approach, to build a semantic de-
scriptor for each region. Note that, this step can be replaced
with any semantic feature learning technique.

Similar to existing supervisory approaches, we assume
that the total number of ground truth objects, Nc, is known
apriori. The features for the ground truth segments in the
training data are stored in the matrix X = [xi]

T
i=1 and their

class labels are denoted as {yi|yi ∈ {1, 2, . . . , Nc}}Ti=1.
The goal of LDE is to exploit both the supervisory label
information, and the local structure in data to create a sub-

Candidate object region set C!

Graphcuts!

Graphcuts!

Graphcuts!

Graphcuts!

CH
0 :!

CH
1 :!

CH
2 :!

CH
3 :!

Figure 5. Localized consensus inference for each potential object.

space representation that can discriminate between different
classes of objects. We construct the undirected, intra-class
and inter-class graphs G and G′ respectively, and the edges
between the samples are coded in the affinity matrices W
and W′. The affinities are defined as follows:

wij =

{
1 if yi = yj AND [i ∈ Nk(j) OR j ∈ Nk(i)],

0 otherwise.

w′ij =

{
1 if yi 6= yj AND [i ∈ N ′k(j) OR j ∈ N ′k(i)],

0 otherwise.

HereNk(i) andN ′k(i) denote the intra-class and inter-class
neighborhood for the sample xi. Following this, we build
the intra-class graph Laplacian as L = D−W, where D is
a degree matrix with each diagonal element containing the
sum of the corresponding row or column of L. Similarly,
we construct the inter-class graph Laplacian L′. The d pro-
jection directions for LDE, V, is computed by optimizing

max
V

Tr[VTXTL′XV]

Tr[VTXTLXV]
. (2)

Instead of finding the global solution to the trace-ratio max-
imization problem in (2), a greedy solution can be obtained
by converting it to an equivalent ratio-trace maximization,
maxV Tr[(VTXTLXV)−1VTXTL′XV]. The solution
to this problem can be obtained using the generalized eigen
value decomposition.

Given the semantic descriptor for a segment, VTx, our
goal is to estimate the likelihood of that segment containing
each of the Nc objects. Though any non-parametric model-
ing technique can be used to obtain the likelihood estimates,
we observed that a simple reference-based scheme [13] was
sufficient for this task. By computing the average similar-
ity of the semantic descriptor for a segment to each class of
ground truth data, we measure the relevance of each class.
We use the following similarity metric:

S(r, gki ) = 1−
γ
(

k
2 ,

d(r,gk
i )

2

)
Γ( t

2 )
, (3)
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where d(r, gki ) denotes the χ2 distance between the seman-
tic descriptor of a region (segment) r and that of the ith train-
ing sample in class k, γ(.) is the lower incomplete gamma
function, Γ denotes the gamma function, and t is a positive
integer that specifies the number of degrees of freedom (set
to 4 in our experiments). The second term in the expression
is the cumulative distribution for chi-squared distribution.
For a ground truth class k, we use the average similarity
of the segment with respect to all samples in that class to
define the likelihood,

Lk(r) =
1

nk

nk∑
i=1

S(r, gki ). (4)

For each hierarchy m, we evaluate the likelihood L for
all regions whose volume is higher than a domain-specific
threshold, and assign the region to one of the Nc classes, if
the corresponding likelihood (referred to as the confidence
measure) is greater than a confidence threshold κ. We ex-
plore all levels in the hierarchy and retain only the most
likely regions. Note that, there can be multiple candidate
segments for an object within the same hierarchy. The over-
all candidate segment set, C, is created by merging the in-
dividual sets from all hierarchies (Figure 4).

3.4. Consensus Inference using Graphcuts

As discussed earlier, for each potential object, we obtain
a consensus inference using candidates from multiple hy-
potheses. As shown in Figure 5, we begin by sorting all
candidate regions from C in the decreasing order of their
confidence measures. Following this, we pick the candi-
date region with the highest confidence, c0 ∈ C, and collect
the set of regions (CH ) that have a high volume overlap ra-
tio with c0 (set to 0.6 in our framework). We propose to
perform consensus graphcut segmentation on the union of
regions from CH . Let us define the set of supervoxels in the
union of CH as V0, and the corresponding set of edges by
E0. The segmentation indicator set A = {αi} defines a bi-
nary label αi (foreground/background) for each supervoxel
in V0. The Markov Random Field (MRF) formulation for
graphcuts [5] can be expressed as

F (A) =
∑

r0i∈V0

Fd(αi) + λ
∑

e0i,j∈E0

Fs(αi, αj). (5)

To define the data penalty, Fd, we build 256-bin inten-
sity histograms for all supervoxels, and build parametric
models for foreground/background regions. We experi-
mented with few modeling choices, including the popu-
larly adopted Gaussian Mixture Models, and found that a
simple K-Means clustering with K = 2 produced very
similar results. Given the two cluster centroids H0 and
H1, the data cost for a supervoxel r0i , Fd(αi), becomes
exp

(
− γχ2(H(r0i ), H0)

)
, and exp

(
− γχ2(H(r0i ), H1)

)

for the foreground and background labels respectively. To
define Fs, we perform a consensus inference on the super-
voxel composition from all candidate regions in CH . We
first initialize all entries of the consensus matrix M to 1.
For any pair of supervoxels, we count the number of can-
didate regions where the two supervoxels are not merged
(η(i, j)), and we update the entry mi,j as 1− (η(i, j)/NH),
where NH is the total number of elements in CH . The re-
sulting segmentation is stored, all candidate regions used
in the current iteration (CH ) are removed from C and this
procedure is repeated until C = ∅.

4. Application to Transportation Security

CT imaging has found wide-spread use in applications,
beyond medical diagnosis, such as material characterization
and transportation security. While each area uses different
imaging modalities, the overarching problem is to find ob-
jects or other prominent features in noisy, cluttered images.

In this paper, we apply our technique to the problem to
the CT scans of checked luggage. This is a pressing prob-
lem of national interest as checked luggage represents a sig-
nificant risk factor for commercial air traffic. The dataset
has been generated by the DHS ALERT Center of Excel-
lence at Northeastern University [7] to develop and test Au-
tomatic Threat Recognition (ATR) systems. The data set
contains 188 bags (100 bags for training and the rest for test-
ing) and each bag’s reconstructed volume varies between
512×512×180 and 512×512×420, depending on the size
of the bag. All bags contain a variety of everyday objects,
e.g. clothes, food, electronics, etc., alongside one or more
simulated threats. There are 3 different targets of interest:
saline solution in bottles or bags, rubber sheets of varying
thickness, and modeling clay in different shapes and quan-
tities. The targets of interest are hand-labeled and the ul-
timate goal is to accurately identify all targets. However,
as shown in Section 5 the data contains severe noise and
artifacts and suffers from partial volume effects due to in-
sufficient spatial resolution. Note that, having an accurate
estimation of the volume and configuration of target mate-
rials is essential in assessing a potential threat.

As described in Section 2, existing frameworks for an-
alyzing airport scans are designed for specific tasks, and
it is not straightforward to adopt them to a general ATR
problem. Hence, we resort to comparing our method to the
popularly adopted region-growing technique. In addition
to demonstrating the effectiveness of the proposed method,
we study empirically the effectiveness of randomness and
ensemble size on the segmentation performance.

5. Results and Discussion

The crucial parameters in our setup are the ensemble size
M and the level of randomness in the ensemble creation, for
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Figure 6. Effect of randomness on the segmentation performance. For three example images, we show the F-measures for the most and the
least accurate hypotheses from the ensemble at increasing levels of randomness. For comparison, we include the accuracies for the greedy
solution and the proposed consensus inference. At low degrees of randomness, the method fails to compensate for the image uncertainties,
while with excessive randomness is unable to produce highly accurate hypotheses, especially for small ensemble sizes.

Figure 7. Effect of ensemble size on the segmentation performance. For two example images, we show the segmentation results obtained
using our algorithm at varying ensemble sizes. From left to right in each row, ground-truth labels, greedy solution, proposed segmentation
at M = 1, M = 5, and M = 20 respectively. For a sufficient level of randomness during ensemble construction, we do not observe any
significant performance improvement beyond M = 20, with this dataset.

which we provide a detailed empirical analysis. To evaluate
segmentation performance with respect to the ground-truth
labels, we compute the F-measure [21], 2PR

P+R , where P and
R are the precision and recall respectively. For all results
reported this section we fixed the LDE dimension d = 5,
confidence threshold κ = 0.65, the penalty in (5) at λ = 0.4

Effect of randomness: We proposed to improve the
greedy solution by creating an ensemble of segmentations,
based on randomized merging during hierarchy construc-
tion. The desired level of randomness is provided through
the threshold parameter δ. The degree of randomness di-
rectly controls the both the segmentation quality and the
required ensemble size. At one end, insufficient random-
ization will produce hypotheses that are mere perturbations
of the greedy solution, and hence cannot resolve uncer-
tainties in detecting object boundaries arising due to im-
age artifacts. Whereas, excessive randomization can pro-
duce highly inaccurate, albeit diverse, hypotheses. Fur-

thermore, at a higher degree of randomness, the number
of hypotheses required to produce high quality solutions
can be quite large. As a result, we need to determine a
sufficient level of randomness to compensate for the arti-
facts, while keeping the ensemble size reasonable. To this
end, we ran our segmentation algorithm at increasing lev-
els of randomness (M fixed at 10), and computed the F-
measure for each of the hypotheses. We used three lev-
els of randomness, each in turn containing 3 settings for
δ, {low; 0.98, 0.975, 0.98}, {sufficient; 0.95, 0.9, 0.85},
and {excessive; 0.65, 0.6, 0.55}. Figure 6 shows the F-
measures for the least and the most accurate hypotheses in
an ensemble for 3 example images, along with the results
of the greedy solution, and the proposed method. As ex-
pected, increasing the randomness tends to produce more
accurate hypotheses when compared to the greedy solution.
Equivalently, the minimum F-measure of an ensemble is
significantly lower at high degree of randomness, indicat-
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Figure 8. Segmentation performance evaluation - In each case, the
green circle corresponds to the mean performance, while the bot-
tom and top edges of the box show the performance at 20 (worst-
case behavior) and 80 (optimistic behavior) percentiles.

ing that the ensemble size must be much larger to guar-
antee the inclusion of good quality hypothesis. For exam-
ple in 6(a), the method produces poor quality hypotheses
at both low and excessive levels of randomness. The for-
mer is due to inability of the hierarchical merging process
to compensate for the artifacts, while the latter is because
the method allows very low probability merges during hi-
erarchy reconstruction. Furthermore, in most cases, our
per-object consensus produces more accurate results than
the best hypothesis, which is the upper-bound on the per-
formance of any hypothesis ranking technique [24]. Note
that our approach identifies potentially correct hypotheses
for each object based on discriminative features and obtains
a weighted consensus from them. Consequently, inaccura-
cies in our feature matching strategy can sometimes make
the consensus solution slightly inferior to the best hypoth-
esis in the ensemble. From our empirical analysis, we find
that sufficient amount of randomness that can provide ro-
bust hypotheses can be achieved at 0.85 ≤ δ ≥ 0.95.
Effect of ensemble size (M ): In addition to impacting
the segmentation performance, the choice of M determines
the computational complexity of our approach. In order
to demonstrate its effect on segmentation accuracy, we ap-
plied our technique at different ensemble sizes of M =
{1, 5, 10, 20} for δ fixed at 0.9. We observed a consistent
improvement in performance with increasing ensemble size
and no significant improvements beyond M = 20. The
segmentation results for two example images, at different
number of hierarchies, are shown in Figure 7. Although
segmentation with larger M is computationally expensive,
the construction of the ensemble can be easily parallelized.
Performance Evaluation: In order to evaluate the pro-
posed method on the ALERT airport security dataset, we

fixed the number of hierarchies, M = 20 and the thresh-
old δ = 0.9. Furthermore, we evaluated the perfor-
mances of the greedy solution and the best hypothesis in
the ensemble respectively. Note that, the latter denotes the
maximum achievable performance of a hypothesis ranking
method. Together with these two approaches, we consid-
ered a region-growing method, similar to the one proposed
in [22], that often produces state-of-the-results in this area.
In particular, we ran the region-growing method (RG) at
multiple, hand-tuned parameter settings, and report the re-
sults from the best-performing parameter setting.

We computed the F-measure of the segmentation for
each baggage, using all four methods. Figure 8 shows the
mean performance for each case, along with the F-measure
at the 20 (worst-case behavior), and 80 (optimistic behav-
ior) percentiles of the total number of test images. First,
not so surprisingly, the average performance of the region-
growing method is very similar to that of the greedy so-
lution. The optimistic behavior of the greedy solution is
significantly better showing that a simple, hierarchical seg-
mentation method is effective for the CT volumes. How-
ever, the worst-case performance is quite inferior in com-
parison to that of RG, implying that this greedy merging
process can be very sensitive to the inherent uncertain-
ties arising due to complex object interactions. Further-
more, it is important to note that the performance of region-
growing methods is very sensitive to the parameter choices,
and hence finding an optimal set of parameters that can
generalize is extremely challenging. Overall, when com-
pared to these two benchmarks, the ensemble approach pro-
duces qualitatively superior segmentations, with a relatively
simpler parameter-tuning process. Furthermore, our pro-
posed per-object consensus inference outperforms the top-
rank performance, and in particular its worst-case perfor-
mance (∼ 0.65) is significantly better than that of the latter
(∼ 0.6). Segmentation results illustrated in Figure 9 evi-
dences the ability of our method to robustly handle complex
object configurations.

6. Conclusions
We propose a novel segmentation approach using an en-

semble of randomized hierarchical segmentations to com-
pensate for noise and artifacts as well as complex object
configurations. Our approach leverages supervisory infor-
mation, in the form of semantic labels, to build discrimina-
tive features that enable us to identify potential object seg-
ments from the hypotheses in an ensemble. Furthermore,
by adopting a per-object consensus inference strategy, we
can improve upon the upper-bound performance of hypoth-
esis reranking techniques. Our approach successfully seg-
ments threat objects from baggage CT scans, compared to
benchmark segmentation approaches for industrial CT seg-
mentation. Empirical studies were carried out to understand
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Figure 9. Segmentation results of the proposed algorithms with other methods. From left to right in each row, the original CT image,
ground-truth labels, region growing (RG), and our segmentation.

the effect of randomness during ensemble creation and the
ensemble size on segmentation performance. Results show
that even with a simple base-model, when coupled with ap-
propriate ensemble construction strategies, can significantly
improve the greedy solution, and produce segmentations

that are robust against the inherent image artifacts. Future
directions of work include designing sophisticated model
averaging strategies in lieu of consensus inference, and cre-
ating a GPU-parallelized implementation of our ensemble
construction.
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